Sickle cell disease is a common and life-threatening haematological disorder that affects millions of people worldwide. Abnormal sickle-shaped erythrocytes disrupt blood flow in small vessels, and this vaso-occlusion leads to distal tissue ischaemia and inflammation, with symptoms defining the acute painful sickle-cell crisis. Repeated sickling and ongoing haemolytic anaemia, even when subclinical, lead to parenchymal injury and chronic organ damage, causing substantial morbidity and early mortality. Currently available treatments are limited to transfusions and hydroxyurea, although stem cell transplantation might be a potentially curative therapy. Several new therapeutic options are in development, including gene therapy and gene editing. Recent advances include systematic universal screening for stroke risk, improved management of iron overload using oral chelators and non-invasive MRI measurements, and point-of-care diagnostic devices. Controversies include the role of haemolysis in sickle cell disease pathophysiology, optimal management of pregnancy, and strategies to prevent cerebrovascular disease.

Introduction
Sickle cell disease is familiar to physicians but the term is actually a misnomer, since it refers not to a single disease but rather to a collection of inherited blood disorders that feature the propensity for erythrocytes to change into crescent or so-called sickle shapes. This characteristic morphology is akin to the common agricultural cutting tool bearing the same name. The condition is well-recognised in many African tribal cultures by distinct names such as chwechwechwe, akututu, or nyuidudui, which are onomatopoeic and reflect the painful symptoms and cries from affected patients. Additional names such as kibeka or mali ya mifupa ina pasuka describe signs and symptoms, such as large spleen or broken bones. Perhaps the most sobering name is ako kufa lobi, which translates loosely to “he will die tomorrow”. Although sickle cell is a common phrase among Anglophones, “drepanocytose” from Greek drepane (sickle) or “anemia falciforme” from Latin falcicula (sickle or false shape) are common in Europe and used throughout Francophone and Lusophone Africa.

Health and survival of children with sickle cell disease have improved considerably with the advent of newborn screening, penicillin prophylaxis, pneumococcal immunisation, and education about disease complications. Unfortunately, the average projected lifespan of affected adults has not improved beyond the fifth decade, although wider use of hydroxyurea and newer therapeutic approaches offer hope for decreased mortality and improved health-related quality of life. Sadly, sickle cell disease in low-resource countries carries a bleak prognosis, especially in sub-Saharan Africa, where it is associated with high early childhood mortality.

This Seminar does not provide an encyclopaedic or exhaustive summary of the history, pathophysiology, and management of sickle cell disease; readers are referred to recent summaries, and National Heart, Lung, and Blood Institute Evidence-Based Guidelines. Instead, we offer a concise review of clinically relevant issues including current treatments, new advances, novel therapies, areas of controversy, and assessment of the global disease burden. We attempt to document exciting developments in the field reflecting activity and interest by academic institutions, pharmaceutical industries, biotechnology companies, and governments. We predict the near future will provide a long overdue paradigm shift with unprecedented opportunities for prolonged and improved life for people with sickle cell disease.

Diagnosis
Sickle cell disease is caused by the inheritance of abnormal beta-globin alleles carrying the sickle mutation on the HBB gene (Glu6Val, B^S). The most common and severe form is homozygous HBSS (sickle cell anaemia) with inheritance of B^S from both parents, which permits formation of the pathological sickle haemoglobin tetramer (α2B^S2, HbS). Other forms of sickle cell disease include compound heterozygous conditions, such as haemoglobin C (HbC) with HbS (HbSC), HbS with β-thalassaemia (HbS/β-thalassaemia or HbS/β-thalassaemia), and HbS with other beta-globin variants such as HbSD or HbSO, all of which express sufficient HbS to cause intracellular sickling. The inheritance of both HbA and HbS (HbAS) is sickle cell trait; strictly not a form of sickle cell disease, sickle trait might be associated with adverse health outcomes.

Search strategy and selection criteria
We did a careful search of the scientific literature in English up to July, 2016, using the terms “sickle cell”, “hydroxyurea or hydroxyureamidine”, “transfusions”, “transcranial Doppler”, and “alloimmunization”; we also reviewed the 2014 National Heart, Lung, and Blood Institute (NHLBI) evidence-based guidelines. We searched through ClinicalTrials.gov for all open trials identified as “sickle cell”, “hydroxyurea”, and “open or recruiting”. We identified and reviewed all published phase 3 trials for children and adults with sickle cell anaemia, with a focus on trials involving cerebrovascular disease, transfusion therapy, and hydroxyurea.
techniques can identify HbS and variant haemoglobins. Electrophoresis separating normal from abnormal haemoglobins is the most common technique, using standard alkaline gel, isoelectric focusing, capillary electrophoresis, or high performance liquid chromatography. Chemical and solubility tests that identify HbS are prone to error and should not be used in isolation to establish the diagnosis of sickle cell disease. Newer methods including DNA-based or antibody-based tests offer the possibility of accurate point-of-care diagnostics.

Pathophysiology

In sickle cell disease, erythrocytes undergo rapid but reversible shape change on deoxygenation, and intracellular polymerisation of the abnormal HbS molecule stretches the normal flexible biconcave shape into an elongated rigid form. Sickled erythrocytes cause vaso-occlusion together with many other cellular and plasma factors and abnormal endothelial interactions (figure 1), leading to a broad range of acute and chronic clinical complications caused by repeated ischaemia and inflammation. Re-oxygenation of erythrocytes breaks down the HbS polymer and restores the normal shape. This process of sickling and unsickling continues until the erythrocyte membrane is no longer flexible, and irreversibly sickled cells with dense intracellular polymers undergo extravascular haemolysis or extravascular removal by the reticuloendothelial system. Plasma free haem and plasma free haemoglobin might contribute to vascular damage.

Acute clinical complications

A wide variety of acute complications occur in sickle cell disease reflecting the complex pathophysiology of vaso-occlusion, infection, anaemia, and infarction (table 2). In well-resourced countries, acute complications are rarely fatal for children but can be lethal for adults with chronic organ complications, including renal, cardiopulmonary, and vascular dysfunction. Acute chest syndrome and stroke are potentially life-threatening and require prompt and well-structured organisation to deliver emergent and specialised care.

Acute pain, the hallmark clinical feature of sickle cell disease, reflects vaso-occlusion and impaired oxygen supply, but also infarction-reperfusion injury. Infants develop dactylitis, and both children and adults can have pain affecting bones in the extremities, chest, and back. Non-steroidal anti-inflammatory drugs and opioids provide effective relief, and guidelines describe appropriate management of sickle-related pain.

Bacterial infections are serious because the spleen is damaged during infancy from intraparenchymal sickling. Functional asplenia leaves children at risk for life-threatening pneumonia, sepsis, and meningitis.
especially from encapsulated organisms like Streptococcus pneumoniae and Haemophilus influenzae type b. Pneumococcal conjugate vaccines have dramatically reduced the incidence of invasive pneumococcal disease in sickle cell disease, but non-vaccine serotypes could emerge. Prophylactic penicillin is required for young children, along with education to seek emergent medical care for fever and receive broad-spectrum antibiotics. Acute chest syndrome, defined as a new pulmonary infiltrate with chest pain, fever, tachypnea, wheezing, or cough, is a leading cause of death in adults. Antibiotics covering pneumococcus, chlamydia, and mycoplasma should be provided, and oxygen and transfusions should be available as needed. Respiratory deterioration with worsening hypoxaemia necessitates urgent exchange transfusion.

Worsening of anaemia can occur with acute splenic sequestration crisis, transient red cell aplasia, or increased haemolysis especially following transfusions. Simple transfusion should correct haemoglobin concentrations only to the baseline value, avoiding cardiovascular compromise and hyperviscosity. Transfusions are warranted for severe anaemia, with clinical indications and complications summarised in figure 2.

Stroke occurs primarily in childhood, with acute onset of neurological dysfunction from ischaemia and infarction, but cerebral haemorrhage occurs primarily in adults. Before transcranial Doppler (TCD) screening, stroke occurred in 5–10% of children, leaving permanent sequelae with motor, cognitive, and psychological deficits. The sudden onset of neurological abnormalities must be presumed stroke, warranting prompt brain MRI and magnetic resonance angiography (MRA) including diffusion-weighted, perfusion, and vascular sequences if available, or else the use of CT scans can be substituted. For acute stroke, exchange transfusion should be done promptly, followed by chronic transfusions to prevent stroke recurrence.

Chronic organ complications

Compared with acute sickling events, less is known about the pathogenesis of organ damage resulting from repeated vaso-occlusion, infarction, and chronic haemolytic anaemia. A wide variety of organ dysfunction and failure is recognised, leading to high use of health care facilities, poor quality of life, and shortened survival. Most adult patients with sickle cell disease reach a stage, usually in the third decade, when chronic organ complications become the main cause of morbidity and mortality.

Parenchymal damage develops through different mechanisms and almost every organ system can be affected (table 3). Complications such as retinopathy, avascular necrosis, neurological decline, leg ulcers, and recurrent priapism are associated with morbidity and impaired quality of life, but renal dysfunction and cardiopulmonary disease are the most lethal. Sickle nephropathy starts in childhood with loss of urine concentrating ability and glomerular hyperfiltration. Frequently, proteinuria develops with glomerulosclerosis, decreased glomerular filtration rate, and eventual end-stage renal disease. Microalbuminuria is an early sign, occurring in 30% of patients by adulthood and progressing to nephrotic proteinuria. Angiotensin converting enzyme (ACE) inhibitors can decrease proteinuria; ten patients with biopsy-proven glomerular enlargement and focal segmental glomerulosclerosis received enalapril, resulting in a 57% reduction in 24-hour urinary protein excretion (p<0.001). ACE inhibitors are commonly prescribed for albuminuria, but hydroxy-carbamide is also effective for treatment and prevention of
Seminar

Chronic transfusions help prevent long-term complications such as increased oxygen-carrying capacity and improved blood flow, using the simple transfusion technique. Transfusions are given acutely for immediate benefits, such as increased oxygen-carrying capacity and improved blood flow, using the simple transfusion technique. Chronic transfusions help prevent long-term complications by replacing rigid sickled erythrocytes with normal deformable cells and by suppressing formation of sickled erythrocytes, using monthly simple or exchange transfusions.

Figure 2 shows the clinical indications for simple transfusions including severe anaemia, acute organ damage, and preoperative prophylaxis. Sickle cell disease always features ongoing haemolytic anaemia, but acute symptomatic exacerbation of chronic anaemia can cause symptoms of hypoxia and hypoperfusion. Examples include acute splenic sequestration, transient red cell aplasia from parvovirus B19 infection, and hyperhaemolysis. To avoid hyperviscosity, the post-transfusion haemoglobin concentration should not exceed the baseline amount.

Stroke and acute chest syndrome represent acute organ damage that benefits from transfusion; for such serious clinical events the target is less than 30% HbS, a threshold based on expert consensus rather than findings from randomised trials. This goal is achieved most easily using exchange transfusion procedures, such as manual or automated (erythrocytapheresis) techniques, which remove sickled erythrocytes but maintain the baseline haematocrit. Preoperative preparation also benefits from acute transfusion. A multicentre US-based study randomly assigned patients to aggressive versus conservative transfusions; perioperative and postoperative complications were similar for both groups. The recent UK multicentre Transfusion Alternatives Preoperatively in Sickle Cell Disease (TAPS) trial randomly assigned patients to preoperative transfusion versus standard care, but was halted for increased clinical complications (risk ratio 3.8, 95% CI 1.2–12.2, p=0.027) with standard care, especially acute chest syndrome.

Indications for chronic transfusion most frequently relate to stroke prevention, given that children and adults with overt stroke have high risk for recurrence. Transfusions help prevent secondary stroke and discontinuation of prophylaxis is associated with stroke recurrence and increased mortality. Clinical focus has now shifted towards primary stroke prevention, to identify children at highest risk using TCD screening followed by transfusion. In the NIH-sponsored phase 3 multicentre STOP trial, children with abnormal TCD velocities (≥200 cm/s) randomly assigned to receive transfusions had fewer strokes than those assigned to standard care, with a 92% reduction in stroke risk, (1 [2%] of 63 transfusion group versus 11 [16%] of 67 standard care, p=0.027) with standard care, especially acute chest syndrome.

Established and future therapies

Transfusions

The mainstay of treatment for sickle cell disease is erythrocyte transfusions, with more than 90% of adults receiving at least one transfusion in their lifetimes. Transfusions are given acutely for immediate benefits, such as increased oxygen-carrying capacity and improved blood flow, using the simple transfusion technique. Chronic transfusions help prevent long-term complications

<table>
<thead>
<tr>
<th>Manifestations</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>ACE inhibitors; hydroxyurea; dialysis; renal transplant</td>
</tr>
<tr>
<td>Heart/lungs</td>
<td>Bronchodilators; hydroxyurea; transfusions*</td>
</tr>
<tr>
<td>Brain</td>
<td>Transfusion; hydroxyurea</td>
</tr>
<tr>
<td>Liver</td>
<td>Cholecystectomy</td>
</tr>
<tr>
<td>Spleen</td>
<td>Splenectomy</td>
</tr>
<tr>
<td>Bones/skin</td>
<td>Physical therapy; core decompression; wound care; surgery</td>
</tr>
<tr>
<td>Eyes</td>
<td>Laser therapy</td>
</tr>
<tr>
<td>Penis</td>
<td>Surgery (if needed)</td>
</tr>
</tbody>
</table>

*unproven treatment benefit. ACE=angiotensin converting enzyme.

Table 3: Chronic clinical complications of sickle cell disease including manifestations and treatment options, by organ dysfunction.

proteinuria.20–24 Fetal haemoglobin (HbF) and α thalassaemia trait protect against renal dysfunction, partly because haemolysis might contribute to development of sickle nephropathy.23,25

Cardiac and pulmonary complications were responsible for 45% of deaths in a large retrospective study of adults with sickle cell disease.26 Pulmonary hypertension and diastolic cardiac dysfunction are associated with increased mortality in adult patients, as are increased tricuspid regurgitant velocities.27–33 Pulmonary hypertension should be confirmed by right heart catheterisation, yet increased tricuspid regurgitant velocities predict severity and early mortality regardless of pulmonary pressures. The roles of chronic haemolysis and anaemia in this setting have been reviewed, but are not universally accepted. A recent prospective study and meta-analysis identified an alternative explanation of restrictive cardiomyopathy, which might bridge the gap between current hypotheses and clinical findings. Current interventions include hydroxyurea therapy, and in some cases, chronic transfusions and specific drugs such as bosentan or riociguat for pulmonary hypertension, but these therapies do not yet have clear evidence of efficacy.

Established and future therapies

Transfusions

The mainstay of treatment for sickle cell disease is erythrocyte transfusions, with more than 90% of adults receiving at least one transfusion in their lifetimes. Transfusions are given acutely for immediate benefits, such as increased oxygen-carrying capacity and improved blood flow, using the simple transfusion technique. Chronic transfusions help prevent long-term complications
with silent (subclinical) cerebral infarction but without abnormal TCD velocities. In this trial, a lower incidence of recurrent infarcts occurred with transfusions (incidence rate ratio 0.41, 95% CI 0.12–0.99, p=0.04), although benefits were primarily for overt stroke (11% of 99 in transfusion group versus 7% of 97 in observation group) with similar progression of subclinical strokes (5% of 99 versus 7% of 97).

Despite their proven benefits, transfusions have complications that can limit long-term use. Erythrocyte alloimmunisation, reflecting discrepancies in blood group antigens between donors and recipients, is especially relevant for sickle cell disease, in which delayed haemolytic transfusion reactions can be life-threatening. In practice, serological matching for ABO blood group antigens, Rhesus antigens (RhD, RhC, and RhE), and Kell (K) antigens does not fully prevent alloimmunisation, because of RH alleles with reduced or altered antigen expression. Extended, and even molecular genotyping, of blood group antigens is now implemented in some centres.

Regularly transfused patients develop haemosiderosis with parenchymal iron deposition, and can experience fatal complications. Iron chelation by oral or parenteral administration is therefore mandatory when advisable. Assessment of iron overload is difficult using serum markers because chronic inflammation increases ferritin levels; MRI quantification of liver iron content is novel and proving helpful. Transfusion-acquired iron overload in the heart is rare in sickle cell disease, probably because iron released by transfusion and haemolysis is efficiently handled by the effective erythropoiesis of sickle cell disease, but not as well by the ineffective erythropoiesis in thalassaemia. Erythrocytapheresis reduces iron loading from chronic transfusion programmes and reduces the need for chelation.

An ongoing concern regarding transfusions relates to transmission of blood-borne organisms. Transfusion-transmitted viral infections have been greatly reduced as a result of the use of screening strategies, but transmission of hepatitis B and hepatitis C, as well as HIV, still occurs with disappointing frequency in low-resource settings, where systematic screening is not universal. In Senegal more than 7% of accepted blood donors carry hepatitis B surface antigen, 0–71% have hepatitis C antibodies, 0–34% have syphilis, and 0–05% have HIV. In Africa, additional concerns exist about blood availability and cost.

Hydroxycarbamide

Recognising that HbF inhibits intracellular HbS polymerisation, and that higher HbF is associated with reduced morbidity and mortality, pharmacological induction of HbF is a logical goal for treating sickle cell disease. Numerous treatments can increase HbF concentrations, but most are toxic and not feasible for long-term therapy. Hydroxycarbamide was shown to induce HbF in sickle cell disease over 30 years ago, and subsequent studies have proven its laboratory and clinical efficacy.

As a potent ribonucleotide reductase inhibitor, hydroxycarbamide depletes intracellular deoxynucleotide pools required for DNA synthesis and repair; this cytostatic activity is used therapeutically for malignancy, HIV, and myeloproliferative neoplasms. HbF induction also involves other metabolic pathways including guanylyl cyclase and SARK, a guanosine triphosphate-binding protein, but altered cell cycle kinetics with stress erythropoiesis might also be important.

Hydroxycarbamide is well-tolerated in sickle cell disease when given once daily orally, with few short-term side effects. After a phase 1/2 trial, a multicentre randomised phase 3 trial in adults showed a successful primary endpoint with 44% reduction in the median incidence of painful crisis per year (2.5 crises per year in hydroxycarbamide group vs 4.5 in control group, p<0.001). Secondary endpoints had significant benefits in time to painful crisis, episodes of acute chest syndrome, and number of transfusions and admissions to hospital.

Trials in children quickly followed in Europe and the USA, including a cross-over design (20 mg/kg per day vs placebo) with significant laboratory and clinical benefits including frequency of hospital admission (p=0.0016) and duration of hospital stay (p=0.0027). After a phase 1/2 trial, long-term treatment in children revealed sustained benefits without long-term toxicities. Pilot studies showed safety of hydroxycarbamide in infants and toddlers, leading to BABY HUG, a multicentre randomised controlled phase 3 trial in 213 infants aged 9–18 months at enrolment. This study did not meet its primary endpoint of preserved organ function: for splenic uptake (27% decrease in hydroxycarbamide group vs 38% in placebo group, difference -11, 95% CI -26 to 5, p=0.21) and glomerular filtration rate (increased by 23 mL/min per 1.73m² vs increase by 21 mL/min per 1.73m², difference -2, 95% CI -16 to 20, p=0.84). However, key secondary endpoints showed benefits of hydroxycarbamide including reduced pain, dactylitis, transfusions, and admissions to hospital (all p<0.001); hydroxycarbamide also had significant favourable effects with other quantitative measures of splenic function as well as lower TCD velocities.

In children with known cerebrovascular disease, early studies suggested benefits of hydroxycarbamide for primary and secondary stroke prevention, a multicentre randomised phase 3 trial compared standard treatment of blood transfusions with chelation with an alternative treatment of hydroxycarbamide with phlebotomy for secondary stroke prevention and management of iron overload. The composite primary endpoint was not met: more strokes occurred in the alternative treatment group (0 of 66 standard group vs
seven [10%] of 67 alternative group, p=0.0086) but no difference in iron unloading (median change −2.2 vs −1.2 mg Fe per g dry weight liver, p=0.49). SWITCH was stopped early and concluded that transfusions with chelation remains the better way to manage children with stroke and iron overload. Subsequently, the TWiTCHe multicentre randomised phase 3 trial compared treatment with hydroxyurea with transfusions for primary stroke prevention. The non-inferiority primary endpoint was met with an average TCD velocity of 138 cm/s (95% CI 135−142) in the hydroxycarbamide group compared with 143 cm/s (95% CI 140−146) in the transfusion group (non-inferiority p=8.8×10^−6, post-hoc superiority p=0.023). Switching from transfusions to treatment with hydroxyurea can be considered for some children with cerebrovascular disease.

Transplantation and gene therapy

Stem cell transplantation remains the only curative modality for patients with sickle cell disease.74–76 HLA-matched sibling transplantation procedures use marrow or cord blood stem cells, with overall survival and event-free survival approaching 90%; by contrast, peripheral blood stem cells are associated with increased mortality.76 Despite its success, stem cell transplantation has a restricted application, because only 10–20% of patients have unaffected matched sibling donors and substantial concerns remain about transplant-related mortality and long-term toxicities, particularly with regard to infertility.77,78 Transplantation outcomes must also be compared with hydroxyurea therapy, for which long-term treatment appears to be safe and effective.7

Most successful stem cell transplantations for sickle cell disease have been limited to procedures in children, through the use of myeloablative conditioning and fully matched sibling donors. These regimens can be toxic, so are typically available only for those with severe disease but no end organ dysfunction.77 However, transplantations are effective in preventing future clinical complications such as painful vaso-occlusive crises, acute chest syndrome, stroke, and progression of cerebrovascular disease.78,79 Reduced toxicity conditioning regimens have allowed successful transplantation in adults, by using matched sibling or family donors and these procedures have reported 87% event-free survival.8

Attempts to make stem cell transplants available to more patients by expanding the donor pool using matched unrelated donors and unrelated cord blood units have not been successful. In a US multi-centre trial9 investigating matched, unrelated transplants, the unrelated cord blood group was terminated from the study early because of increased graft rejection, with event-free survival of only 37.5% including one death from chronic graft-versus-host disease. Similar results were observed in 29 patients with matched unrelated donors with 2 year event free survival of 69%; there was a 28% and 62% incidence of acute and chronic graft-versus-host disease, respectively, with 7 deaths. As a result, the regimen was deemed unsafe for widespread use.90 Haploidentical donors potentially allow most young patients with sickle cell disease to have a stem cell transplant, but is currently experimental and high risk; reported overall survival ranges from 75% to 100% but with high rates of graft rejection and transplantation-related morbidity.79,81 A modified protocol with promising early results is now the basis of a multi-institutional trial (STRIDE 2 [NCT02766465], unpublished).

Gene therapy approaches to cure sickle cell disease are in a rapid state of scientific discovery and clinical investigation.82 Bone marrow is used to isolate stem cells, followed by ex vivo incubation with viruses containing an additional gene. After treatment with myeloablative chemotherapy, the patient receives re-infusion of the modified autologous stem cells, which then repopulate the marrow and express the new gene. Current approaches add genes encoding anti-sickling beta-globins (eg, AT87Q, AS3) or HbF, designed for production only in erythroid progenitors. Clinical trials are ongoing with several patients treated to date, with encouraging preliminary results.83 By contrast to gene addition, approaches involving gene correction for HbF induction are in preclinical stages.84 Silencing or knockdown of BCL11A, a transcriptional factor that potently inhibits gamma-globin expression, is another promising approach for gene editing and correction,85 along with forced chromatin looping to reverse globin switching.86

New therapeutic agents

Excluding hydroxyurea, there is an unacceptable dearth of therapeutic options for sickle cell disease. For example, the US Food and Drug Administration currently has several dozen approved therapies for HIV infection but none for children with sickle cell disease. There is renewed interest in treatments that target specific pathophysiological pathways, and new compounds are entering clinical trials. Reviewed elsewhere,87 the main treatment categories include interruption of vaso-occlusion by reducing cellular adhesion, inflammation, or hypercoagulability; prophylaxis against vaso-occlusion by changing cellular hydration, coagulation, haemolysis, oxidation, or platelet activation; and prevention of intracellular HbS polymerisation through HbF induction or haemoglobin stabilisation.

Table 4 summarises current therapeutic approaches and open clinical trials. Treatments inhibiting cell adhesion target selectin molecules on erythrocytes, leukocytes, platelets, and endothelium.88–90 Crizanlizumab (SelG1) targets P-selectin and has achieved success in a recent phase 2 study,91 and pan-selectin inhibitor rivipansel (GMI-1070) and non-specific poloxamer 188 are in phase 3 investigation. Heparins have anti-selectin effects plus anti-inflammatory properties;92 sevuparin has minimal effects on coagulation. Regadenoson is an adenosine 2A receptor agonist with potent effects on the number and activation of invariant natural killer T cells that mediate inflammation.93
Treatments with recent negative phase 3 results include senicapoc to modify erythrocyte hydration\(^9\) and prasugrel with anti-platelet activity.\(^9\) Other anti-platelet agents like ticagrelor remain under investigation, while statins represent a novel means to prevent vaso-occlusion.\(^9\)

Although hydroxyascaramide reproducibly increases HbF levels, other treatments in development include short-chain fatty acid derivatives, histone deacetylase inhibitors, and immunomodulatory drugs.\(^9\)\(^-\)\(^10\) Compounds that modify the oxygen-dissociation curve could reduce deoxygenation that starts intracellular HbS polymerisation.\(^9\)

Global burden of disease

Despite progress to optimise clinical care and expand therapy for sickle cell disease, most observations and research have originated from patients living in North America, UK, or the rest of Europe. However, the worldwide burden is much greater in lower-resource settings and especially in sub-Saharan Africa. According to a published estimate,\(^2\) in 2010 there were 312,302 newborns born with HbSS (IQR 294–307–329,729) and over half of these were born in Nigeria, DR Congo, and India. The prevalence of sickle disease varies between 2–30% in African populations,\(^3\) with an estimated worldwide birth rate of 5,476,407 (IQR 5,290,779–5,679,288) babies heterozygous for sickle cell disease.\(^4\) On the basis of population estimates, by 2050 the number of affected babies could increase by 30%, especially within Africa.\(^4\)

Without newborn screening and simple treatments like penicillin prophylaxis and pneumococcal immunisations, most children born with sickle cell disease die before 5 years of age,\(^5\) although accurate mortality rates in Africa are not available since most children with sickle cell disease die without proper diagnosis or management. According to the World Bank, sickle cell disease is an important cause of disability within sub-Saharan Africa and a leading cause in Nigeria.\(^6\)\(^-\)\(^9\) The 2015 Global Burden of Disease report\(^10\) includes sickle cell disease as causing more than 100,000 deaths, representing a 6–0% increase in prevalence since 2005. Strategies for early identification, control, and management of sickle cell disease could prevent thousands of childhood deaths each year. WHO estimates that sickle cell disease accounts for up to 15% of mortality in children under the age of 5 years in Africa.\(^5\)

Neonatal screening for sickle cell disease has been implemented in many sub-Saharan countries (Nigeria, Ghana, Benin, DR Congo, Tanzania, Gabon, Cameroon, Uganda, and Angola) as pilot programmes, but not yet as systematic or sustainable national strategies.\(^6\)\(^-\)\(^9\) The prevalence of sickle trait in central Africa is typically 10–20% for heterozygous HBAS and 1–2% for homozygous HBSS, with differences according to ethnic distribution and prevalence of malaria.\(^6\)\(^-\)\(^9\)\(^10\)\(^-\)\(^11\) However, most sickle cell disease management programmes in Africa are located in urban areas, with services rarely available in rural areas, where most patients live. A recent economic analysis of newborn screening in Angola showed high cost-effectiveness,\(^12\) which should encourage other African countries to adopt and expand screening services. India has begun targeted screening in high-burden states, recognising that marginalised tribal populations have the highest prevalence.\(^12\)

Screening in Jamaica has recently expanded to island-wide access, stimulated by compelling data of reduced infant mortality.\(^13\) Immigration into the European Union has heightened the urgency for increased sickle cell disease screening and improved services for patients arriving from the Middle East and Africa.\(^13\) Figure 3 indicates the steps required beyond screening for implementing a national sickle cell disease strategy.

From a clinical perspective, sickle cell disease in low-resource countries features variable phenotypic expression depending on genetic and environmental factors. More severe disease expression occurs with the Central African Republic (Bantu) beta-globin haplotype in central African countries, with worse anaemia and lower concentrations of HbF.\(^14\) Central African patients also display specific clinical features: hand–foot syndrome, sepsis, and acute anaemia are early clinical signs; persistence of a large spleen occurs in 30–40% of children over age 5 years. Acute chest syndrome is common but can be challenging to diagnose and treat without proper

<table>
<thead>
<tr>
<th>Table 4: Completed, current, or upcoming clinical trials for sickle cell disease with new investigational agents, listed by ClinicalTrials.gov reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>NCT01245279</td>
</tr>
<tr>
<td>NCT01685515</td>
</tr>
<tr>
<td>NCT0214203</td>
</tr>
<tr>
<td>NCT02155088, NCT02567682</td>
</tr>
<tr>
<td>NCT0272346</td>
</tr>
<tr>
<td>NCT04568830, NCT01788631</td>
</tr>
<tr>
<td>NCT01892192</td>
</tr>
<tr>
<td>NCT01895261</td>
</tr>
<tr>
<td>NCT02098993</td>
</tr>
<tr>
<td>NCT02214121, NCT02482298</td>
</tr>
<tr>
<td>NCT02372241</td>
</tr>
<tr>
<td>NCT02411198</td>
</tr>
<tr>
<td>NCT02515838</td>
</tr>
<tr>
<td>NCT02536010</td>
</tr>
<tr>
<td>NCT02675540</td>
</tr>
<tr>
<td>NCT01737184, NCT02448616</td>
</tr>
<tr>
<td>NCT02157003</td>
</tr>
<tr>
<td>NCT02500773</td>
</tr>
<tr>
<td>NCT02604368</td>
</tr>
</tbody>
</table>

Studies that are investigating the use of analgesics, hydroxycarboamide, or transfusions were not included in this list, and transplantation-related protocols were also excluded. Trials were accessed on ClinicalTrials.gov on July 18, 2016. More study details are available from www.clinicaltrials.gov. BP=blood pressure.
Planning and coordination
- Ministry of Health officials
- Doctors and nurses
- Health-care workers
- Laboratory technologists

Sample collection
- Dried blood spots vs liquid blood
- Hospital births
- Neonatal (immunisation clinics)
- Pre-school or pre-marital screening

Testing laboratories
- Appropriate equipment and reagents
- Trained technical staff
- Scoring of blood specimens
- Verification of abnormal results

Patient follow-up
- Locating affected babies
- Confirmatory testing
- Initial preventive care
- Integration into primary health system

Care and treatment
- Penicillin prophylaxis, folate acid
- Pneumococcal vaccinations
- Safe transfusion support
- Hydroxyurea therapy

Public awareness
- Public health officials
- Radio and television
- Billboards and leaflets
- Public sensitisation campaign

Data management
- Sample shipment and processing
- Transmission of results
- Quality control procedures
- Storage of results in central database

Education and training
- Laboratory technologists
- Health-care workers
- Ministry of Health officials

Programme components
- Laboratory facilities
- Pilot and long-term funding sources
- Partners in academia and industry
- Available laboratory facilities

Subjective endpoints
- Cytopenia
- Adherence
- Malnutrition
- Pre-term delivery

Objective endpoints
- Cerebral infarcts
- Stenosis
- Intracranial arterial disease

Sample transport works best with dried blood spots compared with liquid specimens in low-resource settings.

Knowledge of the natural history of sickle cell disease in sub-Saharan countries is essential to promote key policies that governments are able to implement as recommended by WHO. Early diagnosis, public sensitisation, and comprehensive care programmes; rational use of safe blood transfusions; prevention of infections using oral penicillin and immunisations; use of rapid diagnostic tests particularly in rural areas; prevention of complications by accessible hydroxyurea are recommended and essential for improving care in resource-poor regions. Fortunately, research is now being done in high burden regions (table 5). The multi-national CADRE study115 in west Africa follows-up thousands of patients and recently reported proteinuria in childhood, warranting early screening and treatment. Hydroxyurea is being introduced into sub-Saharan countries through specific prospective clinical trials;116,117 if shown to be safe and effective, wider access with affordable pricing will be required.

Recent advances
Universal TCD screening
Stroke is a devastating clinical complication of sickle cell disease that leaves permanent motor, cognitive, and psychological deficits. TCD measures the maximum time-averaged mean velocity (TAMV) of blood flow in the intracranial arteries, and identifies children with abnormal velocities (≥200 cm/s) at highest risk of developing stroke.113 TCD does not identify moya-moya disease or aneurysms; for this reason TCD screening in adults, using adapted TAMV thresholds, should be combined with brain MRI.114,115 Data exist116 that suggest alterations in the extracranial carotid artery also might increase stroke risk, even without intracranial arterial disease. In 435 stroke-free children with sickle cell disease (median age 7.9 years), increased velocities were found in 10–3% of children and were strongly associated with arterial stenosis and silent cerebral infarcts.112,113 Taken together, compelling evidence exists for systematic and universal TCD screening to help prevent primary stroke in sickle cell disease.116 Even in low-resource countries, TCD is robust and can be used to monitor treatment effects.115,116

Management of iron overload
Iron overload occurs commonly in sickle cell disease following sporadic or regular transfusions. Transfusion-acquired iron cannot be removed physiologically, and is stored in tissue macrophages until excess iron is deposited in the liver and other organs. Two oral iron chelators, deferiprone and deferasirox, represent major treatment advances because of their relative safety and efficacy profiles, and because medication adherence is improved, compared with parenteral desferrioxamine.127,128

restricted by blood availability and risk of viral infections. Hydroxyurea therapy is needed, but is currently unavailable because of high costs, inaccessibility, and little experience with dosing and monitoring.

Imaging and supportive care. Toroidal epistaxis, tooth decay, and hypertrophic tonsillitis are also frequent in young patients. Osteomyelitis can be severe and is often multifocal. Malaria is the primary cause of hospital admission and can be fatal; vascular complications including stroke, pulmonary hypertension, and renal failure also occur and can lead to death. Transfusions are

Table 5: Current studies investigating hydroxyurea treatment for patients with sickle cell disease living in low-resource settings, listed by ClinicalTrials.gov reference number

<table>
<thead>
<tr>
<th>Study locations</th>
<th>Phase</th>
<th>Dosage (mg/kg per day)</th>
<th>Primary endpoint</th>
<th>Enrolment target (status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01801423 (SPIN)</td>
<td>Nigeria</td>
<td>1/2</td>
<td>20</td>
<td>Adherence</td>
</tr>
<tr>
<td>NCT01966731 (REACH)</td>
<td>Angola, DR Congo, Kenya, Uganda</td>
<td>1/2</td>
<td>20 x 1 year, then escalate to MTD</td>
<td>Cytopenia</td>
</tr>
<tr>
<td>NCT01916416 (NOHARM)</td>
<td>Uganda</td>
<td>3</td>
<td>20</td>
<td>Malaria events</td>
</tr>
<tr>
<td>NCT02149537 (Risk Stratification)</td>
<td>Uganda</td>
<td>4</td>
<td>Fixed dose, low</td>
<td>Cytopenia</td>
</tr>
<tr>
<td>NCT02556099 (EXTEND)</td>
<td>Jamaica</td>
<td>2</td>
<td>MTD</td>
<td>TCD velocity</td>
</tr>
<tr>
<td>NCT02560935 (SPRING)</td>
<td>Nigeria</td>
<td>3</td>
<td>10 vs 20</td>
<td>First stroke</td>
</tr>
<tr>
<td>NCT0265790 (SPRINT)</td>
<td>Nigeria</td>
<td>3</td>
<td>10 vs 20</td>
<td>Stroke recurrence</td>
</tr>
<tr>
<td>NCT02769845 (SACRED)</td>
<td>Dominican Republic</td>
<td>2</td>
<td>MTD</td>
<td>TCD velocity</td>
</tr>
</tbody>
</table>

Trials were accessed on ClinicalTrials.gov on July 18, 2016. More study details are available from www.clinicaltrials.gov. MTD=maximum tolerated dose. TCD=transcranial Doppler.

Figure 3: Key components of a successful neonatal haemoglobinopathy screening programme

The left panels refer to administrative issues and the right panels focus on laboratory logistics and clinical care. Individual steps are not sequential and can be done simultaneously, indicated by pilot studies in sub-Saharan Africa. All testing laboratories should have two methods of diagnosis, although rapid point-of-care testing might serve as the first step, especially in rural areas. Sample transport works best with dried blood spots compared with liquid specimens in low-resource settings.
Chelation therapy can reduce haemosiderosis in sickle cell disease, but serial monitoring of liver iron concentration is needed to guide dosing and effectiveness. MRI relaxation time techniques (T1, T2, and T2*) estimate liver iron concentration non-invasively, since the presence of iron in MRI shortens relaxation times, resulting in a darker image. In clinical practice, results from both T2 and T2* (reported as their reciprocal values R2 and R2*) are quantitative and the liver iron concentrations correlate well to liver biopsy results. MRI-R2 is available commercially and approved by the US-Food and Drug Administration and European Medicines Agency, but the MRI-T2* technique has several advantages: liver and other organs can be assessed for iron content, estimated iron concentration correlates tightly with biopsy results, and only a single breath hold is required for each image.

Point-of-care diagnostics

Haemoglobin separation techniques can establish the diagnosis of sickle cell disease accurately, but require electricity, equipment, training, and often sample transport to a speciality laboratory. The availability of an accurate point-of-care device to diagnose sickle cell disease is therefore highly desirable, particularly in low-resource settings. The time-honoured method of sickle solubility (eg. SickleDex® [Streck, Omaha, NE, USA]) test, which adds buffered saponin to a blood sample to release intracellular HbS and a reducing agent (bisulfite, hydrosulfite) to generate an insoluble turbid solution, is notorious for poor accuracy and reliability. It does not distinguish sickle cell trait (HbAS) from sickle cell anemia (HbSS) reliably, and is fraught with additional caveats that reduce its predictive value, thus limiting its clinical usefulness. In the past 3 years, academia and industry have developed point-of-care devices that capitalise on biochemical, biophysical, or immunological differences between HbS and HbA to establish a true diagnosis. Most of these devices are in prototype stage but early results are encouraging. If point-of-care diagnostic devices currently in development are found to be simple, accurate, robust, reliable, and inexpensive, then this would be a revolutionary improvement for patients with sickle cell disease living in low-resource settings.

Controversies

Role of haemolysis

Much controversy exists about the respective roles of vaso-occlusion and haemolysis in the pathophysiology of sickle cell disease complications. Two sub-phenotypes have been proposed, associating markers of haemolysis with specific clinical complications in contrast with complications related to sickling, vaso-occlusion, and viscosity. The mechanism of haemolysis-associated complications is nitric oxide (NO) depletion following intravascular haemolysis, with plasma free haemoglobin directly binding and inactivating NO, while arginase released from erythrocytes depletes arginine, the precursor of NO. The most controversial element of this framework is pulmonary hypertension resulting from haemolysis and NO scavenging, detected by increased tricuspid regurgitant velocities and associated with early mortality. Subsequent publications have questioned these findings and challenged the hypothesis, and no consensus has yet been reached. A recent study of erythrocyte survival suggests poor correlation with intravascular haemolysis in sickle cell disease.

Management of pregnancy

Pregnancy in sickle cell disease is associated with increased pain, infections, pulmonary complications, and thromboembolic events. A meta-analysis published in 2015 of 21 studies worldwide with 26349 pregnant women with sickle cell disease found an increased risk of maternal mortality (relative risk (RR) 5.98, 95% CI 1.94–18.44) and stillbirth (RR 3.94, 2.60–5.96). In France, pregnant women with sickle cell disease have increased mortality, particularly post partum because of sickle-related complications. Transfusions during pregnancy, reviewed in a meta-analysis of 12 studies involving 1291 women, showed reductions in maternal mortality (odds ratio (OR) 0.23, 95% CI 0.06–0.91), perinatal mortality (OR 0.43, 0.19–0.99), and neonatal death (OR 0.26, 0.07–0.93). A prospective multicentre randomised trial is warranted to identify the benefits and risks of transfusions during pregnancy, and the safety of continuing hydroxyurea during pregnancy and lactation also needs investigation.

Prevention of cerebrovascular disease

Silent and overt cerebral infarcts are common and damaging in sickle cell disease, but the benefits of prophylactic transfusions must be balanced against the concerns of transfusion complications, especially iron overload, long-term costs, and availability of antigen-matched blood supply. Another option is to treat children with hydroxyurea early in life, to protect against the development of cerebrovascular disease. Evidence from three phase 3 multicentre trials suggests that hydroxyurea might provide such protective effects on the developing brain. National Institutes of Health guidelines recommend that hydroxyurea should be offered to infants at age 9 months, but this strategy is not applied everywhere—especially in Europe—because of concerns about long-term toxicities, particularly on fertility. Early stem cell transplantation, before developing cerebrovascular disease, represents another option to avoid the acute and chronic neurological morbidity associated with sickle cell disease.

Conclusions

Observational studies investigating the pathophysiology of sickle cell disease and its complications have documented the serious morbidity and early mortality of
this inherited blood disorder. Interventional research trials have shown the efficacy of transfusions and hydroxyurea. We are now entering an exciting era when improved neonatal screening, effective infection prophylaxis, prevention of neurological complications, and early hydroxyurea therapy offer the chance to alter the natural history of sickle cell disease. Novel treatments hold further promise to interrupt acute vaso-occlusive complications, as well as ameliorate and even prevent chronic organ damage that reduces the quality and duration of life. Curative therapies can now be realised through stem cell transplantation, and gene therapy could allow straightforward genetic correction in the future. However, despite these exciting opportunities and advances, the global burden of sickle cell disease is enormous and remains inadequately addressed. Renewed efforts from well-resourced countries should focus on improved diagnostics and treatments that aim to lessen the crushing lethality of sickle cell disease worldwide.

Contributors
REW, MdM, LT, and MRA designed the Seminar and wrote the first draft of the manuscript, including figures and tables. All authors participated in the editing of the manuscript and approved the final version, and all fulfilled authorship requirements as outlined in the ICMJE recommendations.

Declaration of interest
REW reports grants and non-financial support from Bristol-Myers Squibb, non-financial support and material donation from Addmedica, Grants from BioMednomics, and personal fees from Global Blood Therapeutics, NovaLabs, and Bayer Pharmaceuticals, outside the submitted work. MdM reports grants from Addmedica during the study, grants and personal fees from Novartis and grants from Pfizer outside the submitted work. LT is a member of the advisory board of SEBIA and Pierre Fabre Foundations. He has financial support from AFD, a French Cooperative Agency for international projects on sickle cell disease in four African countries. Other financial support was received from France Expertise/Initiative that concerns a study on malaria resistance. MRA reports grants from Eli Lilly, Pfizer, MAST therapeutics, Hemaquest, Shire, Astra Zeneca, outside the submitted work. He also reports personal fees from Pfizer and Novartis, and has participated on steering committees and advisory boards for Eli Lilly, Pfizer, and Novartis.

References

